
Disciplina: Blockchain for Education

Kirill Kuvshinov1, Ilya Nikiforov2, Jonn Mostovoy3, Dmitry Mukhutdinov4, Kirill
Andreev5, and Vladislav Podtelkin6

1, 2Teach Me Please, https://teachmeplease.com
3, 4, 5, 6Serokell, https://serokell.io

Version 0.7.1
July 18, 2018

Abstract
In this paper we analyze the main issues that arise from storing educational records

in blockchain and propose the architecture of the Disciplina platform – a domain-specific
blockchain implementation. The platform is designed to act as a decentralized ledger, with
special regard for privacy and mechanisms of data disclosure. We present an overview of the
main entities, their roles and incentives to support the network. Please note that the project
is a work-in-progress and the descriptions provided are subject to change.

1 Introduction
Recent advances in blockchain technology and decentralized consensus systems open up new pos-
sibilities for building untamperable domain-specific ledgers with no central authority. Since the
launch of Bitcoin [9] blockchains had been primarily used as a mechanism for value transfers. With
the growth of the Ethereum platform [13], the community realized that by using a chain of blocks
and consensus rules one can not only store value and track its movement, but, more generally,
store some state and enforce conditions upon which this state can be modified.

Bitcoin, Ethereum and other permissionless blockchains were developed with the assumption
that everyone is free to join the network and validate transactions, that are public. However, the
industry often requires privacy, and thus the permissive solutions with private ledgers came to
exist. These solutions include Tendermint [6], Hyperledger [2], Kadena [4] and others.

The increased interest and the variety of the blockchain technologies lead to the growth of their
application domains. The idea of storing educational records in the blockchain has been circulating
in the press and academic papers for several years. For example, [12] and [3] focus on the online
education and propose to create a system based on the educational smart contracts in a public
ledger. Recently, Sony announced a project that aims at incorporating educational records in a
permissioned blockchain based on Hyperledger [11]. The ledger is going to be shared between
major offline educational institutes.

The main issue these solutions have in common is that they target a certain subset of ways
people get knowledge. We propose a more general approach that would unite the records of large
universities, small institutes, schools and online educational platforms to form a publicly verifiable
chain. Contrary to the solutions like Ethereum, we do not aim at proposing a programmable
blockchain that fits all the possible applications. Rather, we believe, that we should harness
all the latest knowledge that emerged in the last few years in the fields of consensus protocols,
authenticated data structures and distributed computations to offer a new domain-specific ledger.
In this paper we introduce Disciplina — the platform based on blockchain technology that aims to
transform the way educational records are generated, stored and accessed.

2 Architecture overview
In this section we analyze the problem Disciplina aims to solve, describe the possible solutions and
derive the architecture.

1

https://teachmeplease.com
https://serokell.io


We start from some of the major requirements:

1. The platform should be able to store large quantities of private data such as grades, assign-
ments, solutions, etc.

2. Educational institutions should be able to disclose the private data only to the payer.

3. The platform should guarantee fairness of the data trade without involving a third-party
intermediary.

Due to the nature of the platform, it has to operate on sensitive data, such as courses, as-
signments, solutions and grades. Permissionless blockchains, like Ethereum or EOS, would require
disclosing this data to the public, whereas the permissive ones, like Hyperledger, lack public veri-
fiability.

It is important to note that it is possible to use encryption schemes in order to store sensitive
information in public ledgers. This approach, despite being seemingly viable, suffers from incentive
and scalability problems. The nodes of the blockchain would have to store every grade issued by
all the educational institutions from all over the world. Moreover, in most of the public ledgers
the distributed storage is quite expensive, while there is no incentive for educaional institutions to
pay for every grade they issue. Thus, we consider storing the educaitonal records on the public
blockchain economically unjustified. What is more, it is hard to make the data disclosure process
fair in such setting: in order to use the blockchain as an arbiter in case of dispute one has to reveal
the encryption key to a subset of the transcrips issued by a certain educational institution.

Our architecture splits the blockchain into two layers: the private layer contains sensitive data,
and the public one contains the information necessary to validate the integrity and authenticity
of the private blocks. The key entities of the proposed blockchain architecture are presented in
Figure 1.

Figure 1: Key entities of the Disciplina platform

The private layer is maintained by each Educator independently of others. Educators can
be either large educational institutes, capable of running their own nodes, or some trusted party
that runs the chain for the self-employed teachers and small institutions. This layer contains
the personalized information on the interactions between the students and the Educator. All the
interactions, such as receiving an assignment, submitting solutions, or being graded, are treated
as transactions in the private chain.

Students get access to the platform through web and mobile applications. Using the applications
they choose Educators, enroll in courses, get assignments and submit solutions. The scores and the
criteria of whether the Student has finished the course successfully are determined by the Educator.
The education process from the platform’s perspective is as follows:

2



1. A Student chooses an Educator and a course that she wants to enroll in.

2. If the course is offered on a pre-paid basis, the Student uses her app to pay the fee.

3. During the course, the Educator provides assignments that the Student has to complete in
order to get the score.

4. The Student acquires the assignment, completes it and sends the signed solution back to the
Educator (communication between the Student and the Educator happens off-chain).

5. The Educator then stores the solution locally, grades it with a score in range [0..100], and
transfers the score with the hash of the solution to the blockchain.

6. Upon the completion of the course, the Student acquires a final score based on the scores she
got for her assignments. This final score is also added to the Educator’s chain.

Making the Educators’ chains private opens the possibility for Educators to tamper with the
data in their chains. To overcome this issue and make the private transactions publicly verifiable,
we introduce the second, public, layer of the blockchain. The public part of the network consists
of Witnesses — the special entities that witness the fact that a private block was produced by an
Educator.

They do so by writing the authentication information of a private block into the public chain,
which is used in the future by an arbitrary Verifier to substantiate a proof of transaction inclusion
given to it by a Student or an Educator. Witnesses also process public information issued by the
Educators, such as announcements that an Educator has started or stopped offering a course in
a particular discipline. The Witnesses agree on which public blocks are valid using the specified
consensus rules.

The Recruiters are the entities interested in gathering data about students from educational
institutions. They buy this data from Educators using a secure data disclosure protocol, described
in detail in section 3.7. Validity and security of every data trade is also ensured by Witnesses,
because corresponding transactions and actions of each party are also stored in public blockchain.

3 Implementation choices
In this section we describe the proposed architecture in more detail. We present the excerpt on
the internal structure of both public and private chains and the reasoning behind these choices.

In order to deduce the internal structure of our system, we first analyze its use-cases. The
overview of the education process is given in Section 2. The communication between the Student
and the Educator is saved as transactions in the private chain. However, the implementation
details of this chain mostly depend on the data disclosure process.

We will start from analyzing this process and determining the main issues that arise from the
need to disclose and verify the validity of the private blocks. Then we will propose the structure
of the private and public blocks that addresses these issues.

3.1 Anonymity and certification
The permissionless nature of our public chain leads to the ability for malevolent students to create
educational institutes in order to get the scores for the courses they did not attend. Moreover,
the knowledge students actually get by completing the course, and the conditions upon which the
course is considered completed, vary significantly between the educational institutions.

These issues currently can not be solved solely on the protocol level: they require an external
source of information to determine the physical existence and the reputation of an Educator.
Although we leave the public chain open for the Educators to submit their private block headers,
we propose to add a separate layer of reputation and trust on top of the protocol.

We do so by disallowing a new Educator to join the network without an approval from another
Educator. Educators are supposed to rate another Educators basing on off-chain sources of infor-
mation – such as a publication on an official site of a university, which claims that given Disciplina
public key is issued by this university. By approving each other, Educators form a web of trust.
Ratings of Educators are backed up by ratings of Educators which trust them.

3



3.2 Activity Type Graph
When a Recruiter makes a request to one of the Educators, the Educator has to provide as minimal
set of entries as possible. This set has to be verifiable, which means that the Educator provides
the proof of the data validity along with the data being disclosed.

In order to achieve these goals, we divide the data that the Educators store into atomic Activity
Types. Each Educator maintains a journal of transactions per each Activity Type that the Educator
offers.

All the Activity Types are grouped into courses that are further grouped into larger entities
such as subjects and areas of knowledge. This grouping can be stored as the Activity Type Graph
GA with the following properties:

1◦ GA is a directed graph:

GA : 〈V : {Vert}, eout : Vert→ {Vert} | rest〉 (1)

2◦ Each vertex of GA is associated with depth:

GA : 〈d : Vert→ Int | rest〉 (2)

3◦ Law of pointing down:
GA : 〈v ∈ eout(u) =⇒ d(v) > d(u)〉 (3)

4◦ GA has special et cetera vertices u:

∀ v ∈ V ∃u (u ∈ eout(v) ∧ eout(u) = ∅) (4)

The example of the Activity Type Graph (ATG) is shown in Figure 2. The vertex v of the
graph is a leaf if eout(v) = ∅. Otherwise we call it an internal vertex. Every internal vertex of the
graph has a special etc. child (some of these are ommitted in the figure).

Figure 2: An example of the Activity Type Graph. Some of the vertices are not shown

The need for etc. vertices arises from the fact that not all of the Educators teach courses
exactly in leaves — some of them offer general courses that provide just the necessary background.
For example, some of the universities teach the basic “Computer science” course, that contains the
basics of the discipline. In this case, when the particular category is hard to define, the university
would use the etcComputerScience vertex.

4



On the protocol level, the Educators can announce that they teach a particular course, but can
not modify the Activity Type Graph structure. The structure of the graph is maintained by the
core developers and updated upon request from the Educators.

For every pair of vertices (v, u), weight(v, u) defines how the score of a course from the field
of study u affects the summary grade for the field of study v. Let’s define weight(v, u) =
(d(u) − d(v) + 1)−1 if u reachable from v, and weight(v, u) = 0 otherwise. The motivation of
the aforementioned weights is that less specific subject implies the wider knowledge. After that we
can define avgGradessubjectId as a weighted average with weights described above.

3.3 Search queries
An educator can answer one of the following queries:

• For a set of pairs (subjectId1,minGrade1), (subjectId2,minGrade2), ..., (subjectn,minGraden)
and some Count, find no more than Count students with grades satisfying the following in-
equalities: 

avgGradesubjectId1 >= minGrade1
avgGradesubjectId2 >= minGrade2

...
avgGradesubjectIdn >= minGraden

• For the given identifier of a student, return all info about this student.

• For given assignment hash, return the document itself.

3.4 Private chain
Every educator has a private chain. It stores the data about students, and can generate answers
for the queries described above.

Private chain comprises of two main data structures:

• Set of transactions batched into blocks. Every block contains a list of transactions packed
into a Merkle tree.

• Links to the transactions stored in the B+-tree with keys (studentId, studentGrade). Indexes
constructed in such a way that more popular activities go first.

The structure of the private block is shown in Figure 3. The block consists of a public header
that the Educators relay to the Witnesses, and the private body that remains in the educational
institute until it receives a data disclosure request.

During the educational process the Educators emit atomic private transactions. These trans-
actions represent the modifications to the journal of academic achievements (thus, making a trans-
action means appending the data to the journal). The transactions can be of the following types:

• student enrolls in a course;

• student gets an assignment;

• student submits an assignment;

• student gets a grade for an assignment;

• student gets a final grade for the course.

The first two types should be intiated by a student, and should include student’s signature
to prevent spam from partially-honest educator. The structure of the transaction is shown in
Figure 4. Each transaciton has a course identifier (which points to a particular course of the
educaional institution) and a list of subject identifiers. The latter refer to the nodes in the activity
type graph and facilitate the search queries.

Let us denote an i-th transaction in a block as T i
priv. The Educators group the transactions

that occured during the current block time slot, and construct a Merkle tree [8] for these journal
modifications:

5



Figure 3: Private block structure

Figure 4: Transaction structure

Mpriv = mtree({ T i
priv }) (5)

The Educator’s private block body comprises an ordered set of Merkle-authenticated transac-
tions. These transactions are indexed so that the Educator can quickly find a particular transaction
that satisfies some predicate.

The private block header consists of the transactions Merkle root along with the previous block
hash and the information on the Activity Type Graph modifications (ATG delta). The ATG delta
part allows the Educators to inform the Witnesses of the modifications to the courses they teach.
The ATG delta is a pair of sets ∆A = (∆A+,∆A−), where ∆A+ is a set of subjects for which
Educator starts a course and ∆A− is a set of subjects for which Educator closes a course.

An Educator collects private transactions into the blocks with no more than Kmax transactions
per each block. After that, an Educator submits signed block header to the Witnesses so that
private transactions can be confirmed by the public chain. Thus, the private blocks form a publicly
verifiable chain of events.

To incentivize Witnesses to include private block headers into the public chain, an Educator
should pay some amount of coins per each private block. We should take into consideration that
an educator may be both a local tutor and some big university. Depending on that, a number

6



Figure 5: Example of sized Merkle tree

of transactions per each block, as well as paying capacity, may differ. So the cost of a digest
publication should linearly grow with the size of a block. Let the cost for publishing a public block
header be

Cpub(B) = αpub + βpub ·Ntr(B) (6)

, where Ntr(B) is the number of transactions in private block B and αpub and βpub are parameters
of the network – a small constant fee and a linear price coefficient accordingly.

From the description above we can conclude that an educator may have an incentive to lie
about the size of the tree. To achieve the ability to prove the number of transactions in the Merkle
tree, we will store the size of the subtree with the hash in each node (as shown in 5). So every
transaction disclosure will also verify the size. Suppose that an Educator published a header hash
with a wrong size, then every student which is collecting his own fair CV will see that an Educator
deceives him, and moreover not a single data-disclosure deal would proceed.

Let’s look at the example from the figure 5. Suppose we need to disclose data[2]. The path to
the node H is A→ B → E → H. The proof nodes are C, D, and I. So the size of the tree is

C.size+D.size+ I.size+ 1 = 5

We also consider a possibility for small educators to form pools and release blocks together in
order to reduce costs for each individual educator. See appendix A.2 for details.

3.5 Public chain
The Witnesses maintain a public chain – a distributed ledger that contains publicly available
information. If one wishes to perform a transaction on the public chain, she has to pay a certain
fee that serves two purposes. First of all, the fee incentivizes the Witnesses to participate in the
network and issue new blocks. Second, by requiring a fee for each transaction, we protect the
public ledger from being spammed.

We present the structure of the public blocks in Figure 6. The public ledger contains the
following information:

1. Modification history of the Activity Type Graph.

2. Private block headers.

3. Account balances and value transfer history.

There are two major ways to store the account balances and other state information: UTXO and
account-based architectures. UTXO is an unspent transaction output, that contains some predicate
– a condition that has to be fulfilled in order to spend the coins. To prove the money ownership,
the spender provides a witness – an input that makes the predicate true. Thus, the UTXO-based
architecture requires the transactions to be stateless, effectively limiting the application domain [1].
The unspent outputs with an associated state can be treated as smart-contracts in the account-
based architectures like Ethereum [13]. The state is stored in an off-chain storage – the state
database. The transactions are treated as the modifications of the world state.

Disciplina uses an account-based ledger with contracts programmable in Plutus language [7].
Each account has an associated state, which comprises the account balance and other information

7



Figure 6: Public block structure

(e. g. log L of a data disclosure contract). The world state is a mapping between accounts and their
states. In order to make this mapping easily verifiable, we use a structure called the authenticated
AVL+ tree introduced in [10].

The recent achievements in the field of consensus protocols, like the provably secure Ouroboros
[5], allow us to build a public chain based on the Proof of Stake consensus rules. Thus, we can
increase the transaction speed and drop the need for the expensive mining.

3.6 Fair CV
One of the main goals of the Disciplina platform is to provide a way for the Students to easily
prove their educational records. We propose to duplicate the records in the Student’s digital CV.
This CV contains all the records that the parties have generated during the Student’s educational
process along with the validity proofs of that data (see Figure 7).

Figure 7: Student’s authenticated CV

8



In order to prove that some transaction actually occurred in some private block of the particular
Educator, the student has to provide the cryptographic proofs along with the actual data. The
cryptographic proof of the inclusion of an element in an authenticated data structure is generally
a path of hashes. Let us denote the path of the element e in some authenticated data structure X
as path(e,X). Thus, the Student has to provide the following data:

• The Student’s and the Educator’s public keys pkS and pkE.

• The private transaction Tpriv with the course and the grade.

• The Merkle path of the transaction in the journal: Ppriv = path(Tpriv,Mpriv), where Mpriv

is a Merkle tree of the transactions in the private block.

• The public block number H and the Merkle path of the transaction Tpub that pushed the
private block into the public chain: Ppub = path(Tpub,Mpub), where Mpub is a Merkle tree of
the transactions in the block H.

Having this data one can prove the occurrence of a certain transaction in one of the Educator’s
private blocks without the need to request any data from the Educator during the validation
process. Thus, any party can check the validity of the Student’s CV for free if the Student wishes
to disclose it.

Let ρ(e, P ) be the function that substitutes the element e in path P and computes the root
hash of the authenticated data structure. Then the validation process is as follows:

1. Query the public chain to find the block H and obtain the Merkle root of the transactions:
root(Mpub).

2. Check whether ρ(Tpub, Ppub) = root(Mpub).

3. Check that the public transaction Tpub was signed with the Educator’s public key pkE.

4. From the public transaction Tpub obtain the Merkle root of the private transactions: root(Mpriv).

5. Check that ρ(Tpriv, Ppriv) = root(Mpriv).

These validation steps can prove that an Educator with a public key pkE issued a transaction
Tpriv in one of its private blocks. One can attribute the pkE to a particular real-world educational
institution by checking the Educator’s certificate as described in Section 3.1.

3.7 Data Disclosure
Disciplina architecture supports two types of data disclosure requests:

1. Request for a set of authenticated private transactions satisfying some predicate (see details
in Section 3.3)

2. Request for object disclosure

Here we describe a protocol of fair data trade between the Educator as a seller and some
interested party as a buyer. Despite a few variations the protocol is almost the same for all three
types of the data disclosure requests. We first lay out the private transactions disclosure protocol.
Then we describe modifications to the protocol so that one can apply it to other types of data.

The process of data disclosure involves direct communication between a particular Educator E,
willing to disclose a part of the data, and an interested party B (e. g. a recruiter), willing to pay for
this data. Suppose E has some data D. In case of private transactions D is a set of authenticated
transactions, i. e. tuples (Tpriv, Ppriv, H, Ppub). As shown in Section 3.6 this data along with the
educator’s public key is enough to prove that a certain transaction Tpriv actually occurred in some
private block of the given educator.

The protocol fairness is guaranteed by a contract on the public chain. The contract is able to
hold money and is stateful: it is capable of storing a log L with data. All the data that parties
send to the contract is appended to L.

1. The buyer B sends a signed search query SigB(Q) directly to the seller E.

9



2. Let D be a set of authenticated transactions relevant for the query Q. E divides D into N
chunks. When disclosing private transaction, one chunk di is a transaction with proofs that
it was included in a certain private block:

di : (T i
priv, P

i
priv, H

(i), P i
pub) (7)

3. E generates a symmetric key k and encrypts each di with k. Then she makes an array of
encrypted chunks:

Dµ = {Ek(d1), Ek(d2), ..., Ek(dN )} (8)

4. E computes the size of the encrypted answer s = sizeof(Dµ), the cost of this data CD ∼ s,
and the Merkle root of the data R = root(mtree(Dµ)).

5. E sends SigE(CD, s, R, H(Q)) directly to the buyer.

6. If buyer agrees to pay the price, she generates a new keypair (pkB, skB). Then she initializes
the contract with the data provided by the Seller, search query Q, its own temporary trade
public key pkB and CD amount of money.

7. If E agrees to proceed, she sends a predefined amount of money CE to the contract address.
CE is a security deposit: if E tries to cheat, she would lose this money.

8. E transfers the encrypted data chunks Dµ directly to the buyer. B computes the Merkle
root R′ and the size s′ of the received data Dµ

′:

R′ = root(mtree(Dµ
′)) (9)

s′ = sizeof(Dµ
′) (10)

9. B makes a transaction with a receipt SigB({R′, s′}) to the contract address. The parties
can proceed if and only if the following is true:

(R′ = R) ∧ (s′ = s) (11)

Otherwise, the protocol halts.

10. E sends SigE(EB(k)) to the contract.

11. B decyphers and checks the received data.

• In case all the data is correct the Buyer sends a signed accept to the contract.
• In case some data chunk ei ∈ Dµ is invalid, B sends

SigB({ skB, ei, path(ei, mtree(Dµ)) })

to the contract. By doing so, B reveals the data chunk di corresponding to the encrypted
chunk ei. She also shares proof that ei was indeed part of a Merkle tree with root R.
The contract checks the validity of di and decides whether B has rightfully accused E
of cheating.

• In case chunks di and dj have duplicate entries, B sends

SigB({ skB, ei, path(ei, mtree(Dµ)),

ej , path(ej , mtree(Dµ)) })

to the contract. The contract checks whether di and dj do indeed have duplicate entries
and blames E for cheating if it is true.

The contract considers the data chunk di valid if and only if:

1. The transaction in di is unique.

2. The transaction in di has valid proofs of existence (like described in Section 3.6).

3. The transaction in di make the predicate Q true.

10



Table 1: Data disclosure protocol exit points

Condition Step Consequence
∆t > τ 7

B, E get their money back because E wasn’t able to correctly transfer
the data to B.

∆t > τ 9
R′ 6= R 9
s′ 6= s 9
∆t > τ 10 B, E get their money back because B has received the encrypted

data, but E nas not been able to share the key k for it
∆t > τ 11

E gets CE and CD: E correctly shared data to B
accept
from B

11

reject
from B

11 The dispute situation. In case B proofs E cheated, E loses her
security deposit CE . Otherwise, E receives both CE and CD.

The on-chain communications of the parties (steps 7, 9, 10, 11) are bounded by a time frame
τ . In order for the transaction to be valid, the time ∆t passed since the previous on-chain step has
to be less than or equal to τ . In case ∆t > τ the communication between the parties is considered
over, and one of the protocol exit points is automatically triggered. The protocol exit points are
described in detail in Table 1.

The proposed algorithm (though with some modifications) can be applied to object disclosure
requests. Here we define these modifications:

• Q : root(mtree(Object)) – query by the object hash.

• di : (chunk , path(chunk , mtree(Object)) – the data being revealed is an object: uncatego-
rized blob of data relevant to a particular transaction. The object is split into chunks of size
no more than 1 KiB and transferred along with proofs.

• Validation: check that a chunk is indeed a part of the object with root Q.

4 Future work
The current architecture of the Disciplina platform heavily relies on the fact that a new Educator
should gain acceptance from other Educator to join the network, and ratings of a new Educator
are determined by other Educators accepting it. However, it is possible that other Educators
would provide unfair ratings: for example, they could ignore the existence of private teachers, thus
making their contributions less valuable, or purposefully lower the ratings of competitors entering
the network.

Such problems can be avoided if we carefully integrate the algorithm of rating computation
into our architecture. The ratings would be based on the on-chain sources of information and
provide equal opportunities for both private teachers and large educational institutions. However,
integrating the rating system into the arhitecture poses several design challenges that we have to
solve.

5 Conclusion
In this paper we presented the architecture of the Disciplina platform. The described architecture
provides a way to store educational records in the blockchain while preserving the privacy of these
records. The concepts of private chains and a digital CV make it possible to verify the educational
records of a particular person. Educational institutions are connected in a web of trust to provide
credibility for each institution and, consequently, to digital CVs of their alumni.

We developed our platform not only as the source of trust, but also as a database of the students
from all over the world. We believe that the data that is stored in the system has a value in itself.

11



The need to disclose this data was also addressed in the paper: we described a mechanism for the
fair data trade and the measures against the secondary market creation.

References
[1] Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. “Instantaneous Decentralized Poker”.

In: arXiv preprint arXiv:1701.06726 (2017).

[2] Christian Cachin. “Architecture of the Hyperledger blockchain fabric”. In: Workshop on Dis-
tributed Cryptocurrencies and Consensus Ledgers. 2016.

[3] Peter Devine. “Blockchain learning: can crypto-currency methods be appropriated to enhance
online learning?” In: (2015).

[4] Kadena: Scalable blockchain. https://kadena.io/.

[5] Aggelos Kiayias et al. “Ouroboros: A provably secure proof-of-stake blockchain protocol”. In:
Annual International Cryptology Conference. Springer. 2017, pp. 357–388.

[6] Jae Kwon. “Tendermint: Consensus without mining”. In: Draft v. 0.6, fall (2014).

[7] Darryl McAdams. Formal Specification of the Plutus Language. https://github.com/
input-output-hk/plutus-prototype/blob/master/docs/spec/Formal%20Specification%
20of%20the%20Plutus%20Language%20-%20McAdams.pdf.

[8] Ralph C Merkle. “A certified digital signature”. In: Conference on the Theory and Application
of Cryptology. Springer. 1989, pp. 218–238.

[9] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[10] Leonid Reyzin et al. “Improving Authenticated Dynamic Dictionaries, with Applications to
Cryptocurrencies.” In: IACR Cryptology ePrint Archive 2016 (2016), p. 994.

[11] Sony Global Education. https://www.sonyged.com/.

[12] Melanie Swan. Blockchain: Blueprint for a new economy. O’Reilly Media, Inc., 2015.

[13] Gavin Wood. “Ethereum: A secure decentralised generalised transaction ledger”. In: Ethereum
Project Yellow Paper 151 (2014).

12

https://kadena.io/
https://github.com/input-output-hk/plutus-prototype/blob/master/docs/spec/Formal%20Specification%20of%20the%20Plutus%20Language%20-%20McAdams.pdf
https://github.com/input-output-hk/plutus-prototype/blob/master/docs/spec/Formal%20Specification%20of%20the%20Plutus%20Language%20-%20McAdams.pdf
https://github.com/input-output-hk/plutus-prototype/blob/master/docs/spec/Formal%20Specification%20of%20the%20Plutus%20Language%20-%20McAdams.pdf
https://www.sonyged.com/


A Appendix

A.1 Notations

Notation Description
A A party that takes part in the protocol

H(m) Result of applying a collision-resistant hash-function H to a message m

mtree(a) Merkle tree of the data array a

root(M) Root element of the Merkle tree M

path(e,M) Path of the element e in the Merkle tree M

k Symmetric key
pkA, skA Public and secret keys of A

Ek(m) Symmetric encryption with the key k

EA(m) Asymmetric encryption with the key pkA1

SigA(m) Tuple (A,m, sig(skA, H(m))), where sig is a digital signature algorithm1

sizeof(m) Size of m in bytes⊕
Binary string concatenation

A.2 Partially centralized educators
In the Section 3.4 we have concluded that the cost of the private block proof publication should
depend on the size of the corresponding Merkle tree. This is done in order to scale spendings of
different educators with amount of data they produce and store in their private blockchains.

But this solution has a disadvantage: the Witnesses are more incentivized to include proofs from
large educators in public blocks rather than from small educators, as proofs from large educators
contain more fees. If block size is limited, it may lead to delays of inclusion of small educators’
proofs in the public blockchain.

In order to resolve this problem, small educators can use trusted third-party services (e. g.
teachmeplease.com) for interacting with Disciplina platform instead of running Educator nodes
by themselves. But this means that third-party service has access to all the educator’s data,
including marks and assignments of her students, and also receives all the revenue for trading this
data. Some small educators might find this option unacceptable.

Therefore, we propose a mechanism of educator pools, which allow small educators to delegate
block proof publishing to a third party in a partially trustless way.

The idea is the following:

• Every small Educator still maintains her own small private chain

• When a small Educator forms a block in her private chain, she sends the block header to
a third party called pool manager instead of publishing it directly to Witnesses. Another
difference is that Educator should also send a separate signature for her ATG delta (if it’s
not empty).

• A pool manager collects block headers from Educators until total number of transactions in
all Educator’s blocks is more than some threshold Kmin.

• Then pool manager builds a sized Merkle tree over the list of received Educator’s block
headers, forming a second-level block (Fig. 8). The header of second-level block gets published
on the public blockchain. Instead of containing a single ATG delta, the header of this second-
level block contains a list of separate signed ATG deltas of small educators. We assume that
this approach would not create a problem of oversized block headers because Educators don’t
typically create and close courses very often, and an average number of ATG deltas in every
single block header will stay small.

1The particular keys pkA and skA belonging to the party A are generally deducible from the context

13

teachmeplease.com


Figure 8: Two-level hierarchical sized Merkle tree for a block published by a pool manager

• After constructing a second-level block, pool manager sends each of the small Educators a
path to their block headers in a second-level sized Merkle tree.

• Having this path, each Educator can construct a publicly verifiable proof for any transaction
in her private block by simply concatenating this path with a path to transaction in a first-
level Merkle tree.

For every processed block header small educator pays pool manager a fee calculated by this
formula:

Cpool(B) = αpool + βpub ·Ntr(B) (12)

where βpub is a network price coefficient from 6, and αpool is a constant fee set by the pool manager.
If a pool manager sets such αpool that αpool < αpub, but αpoolN > αpub, then for every published

second-level block a pool manager gains αpoolN − αpub coins, while every Educator in pool pays
less for the block header publishing then if published directly to Witnesses. Therefore, every
participant has an incentive to remain in the pool.

However, such approach poses a threat of excessive centralization in the network – it might
happen so that all educators would find it beneficial to join one huge pool, which will be able to
provide the lowest pool fees due to amount of its clients. In order to avoid this, we might change
the formula 6 in a way which diminishes the profits of joining the pool for big educators:

Cpub(B) = αpub · 1{Ntr<Ktr} + βpub ·Ntr (13)

where Ktr is a sufficiently big threshold value. This formula ensures that educators which publish
large blocks don’t pay constant αpub coins for every block, which makes it unprofitable for them
to use pools.

Note that a small Educator participating in the pool should slightly change the structure of his
own chain. Every block header should contain a hash of previous one (as described in Section 3.4),
but blocks of an Educator participating in the pool are published only as part of second-level
pooled block. So the educator’s block header should contain a header hash of a second-level block
containing previous first-level block in educator’s chain instead of header hash of previous first-level
block.

We don’t yet provide a fully trustless solution for pooling. Small Educators should trust a pool
manager to provide correct second-level proofs of their blocks, and in theory an adversarial pool
manager may cheat on Educators by not including their block headers in a published second-level
block after she received the money. However, we assume that deceiving the small educators and
losing them as a long-term clients is far less profitable than being honest. Nevertheless, we are

14



currently working on a fully trustless pooling protocol based on a smart contract which ensures
that a pool manager cannot deceive any Educator.

The idea of pooling also improves the performance of the system, because it reduces the amount
of information published on public chain. Lots of private block headers issued by lots of educators
are replaced by few private block headers issued by large educators and pools.

A.3 Smart-contract implementation
A.3.1 Accounts

There are 2 kinds of accounts:

• Personal: created for each client, directly belongs to that client;

• Robot: created by client, doesn’t belong directly to that client (and anyone else); represents
smart contract.

Robot account should contain, aside from token mapping:

• Data storage for smart contract state;

• The code to control the account, compiled to Plutus Core language.

The Plutus Core language allows declaring a module with exported (public) methods. These
methods will be the public API for the account.

One can evaluate the Plutus Core code itself (not just call public methods) if account directly
belongs to her. Personal accounts don’t have any persistent associated code to control them.

A.3.2 Scripting

The Plutus language will be used to program Robot nodes. Any interaction with account is done
via Plutus code.

The evaluation cost is collected and summed into Fee.
“Sandbox run” can be performed, to check costs and programming errors.
We will call natively-implemented functions to be called from Plutus Core “NIFs”.
Each atomic step of execution has an invocation cost.

A.3.3 NIFs

NIF is an action to be invoked on Account. NIF is the only source of changes in Account.
Any operation on the Account to be implemented should be represented as a call to NIF OR

as a sequence of NIF-calls. This will allow us to reason about security/validity of operations with
more confidence and limit the access and scope of each operation.

A.3.4 Transaction

We will cover “simple money transfer” and “data disclosure” transactions in this section.
“Simple money transfer” transactions will be implemented as transactions with empty “function

call” field.
Transferral transaction must contain:

• Sender signature;

• Receiver signature;

• Amount and kind of funds transferred (must be non-zero overall);

• “Nonce” to prevent double-invocation.

• (Optional) textual message for the receiver;

• (Optional) function call to be invoked upon transaction approval.

• Digest of all other fields, encrypted with Sender private key.

15



Transaction is the only way for accounts to interact.
Function call (if present) will contain the name of exported function and arguments to be

supplied upon invocation.
The function would be invoked like that:

function-name(Sender-signature, amount, value1, value2, ..., valueN)

On successful code invocation, money will be transmitted to the Target account and the costs
will be demanded from the Sender. If the code fails, the transaction is not published as successful
and is rejected.

If there is not enough money supplied for the operation or the code raised an error, whole
transaction will fail.

If there is no function call in a transaction, the code invocation is assumed successful.
The Gas fee for transaction approval will be calculated as sum of costs for atomic actions

performed.

A.3.5 Implementation of the data disclosure protocol using Robot account

We assume that we have 2 sides:

• Buyer

• Seller.

“Gas” below is the estimation of the operation cost. The name and the idea are taken from
Ethereum. “Fee” is a forfeit to either side trying to deceive the opponent. “Sum” is the price of the
data to be sold.

Robot would work as follows. The Buyer invokes a transaction which runs code directly on his
account, that constructs a robot with the following exported methods:

• start-trade();

• accept-encrypted(encrypted-mroot, size);

• send-encrypted-secret(encrypted-secret);

• handshake();

• reject(sk, block, proof-enc);

• cancel(),

carrying Sum + Fee + Gas amount of currency and some predicate to check the data if applicable.
This robot is initialized with the following data:

• Cost in tokens;

• Size of the encrypted data;

• Merkle tree root of encrypted data;

• Timeout, after which the account is destroyed;

• Sink, a person whom the remaining money will be send on timeout;

• Destructor, a procedure to invoke on timeout.

Here is the state machine of that Robot-account:

(0) Account has just been created.
"start-trade" from Seller

WHEN transferred amount = Fee
Notify Buyer
AND GOTO 1

16



(1) The trade is started.
"accept-encrypted(encrypted-mroot, size)" from Buyer

IF encrypted Merkle root and size are the same as initially set in Robot state,
GOTO 2

ELSE
GOTO 8

Timeout!
GOTO 8

(2) Data was transferred. Seller encrypts a session key with the Buyer’s public key.
"send-encrypted-secret(encrypted-secret)" from Seller
Notify Buyer

(3) Off the band, the symmetric key is sent.
"reject(sk, block, encrypted-proof)" from Buyer

GOTO 4

"handshake" from Buyer
GOTO 5

Timeout!
GOTO 6

(4) Arbitration.
The robot performs check.
If it finds that Buyer is right (block invalidates proofs OR the predicate fails),

GOTO 7
else if Seller is right

GOTO 6

(5) Cleanup I.
(Sum + Fee) is sent to Seller.
GOTO 7

(6) Cleanup II.
All remaining money is sent to Seller.
The account is closed.

(7) Cleanup III.
All remaining money is sent to Buyer.
The account is closed.

(8) Cleanup VI.
Fee is sent to Seller.
GOTO 7

A.3.6 Example

Lets assume there are:

• Seller, which has declared that he has his students’ Linear Algebra marks for Nov, 2018 worth
500 tokens (signed in some private Merkle tree);

• Buyer, which has 600 tokens available.

• Robot, which is a smart account created by the Buyer.

We will consider three cases:

17



• Seller sends nothing at all;

• Seller tried to send Buyer encrypted garbage instead of data;

• Buyer tried to blame Seller in giving her invalid data with data being completely valid (in
terms of proofs and predicate).

All trades will have same initial part, so we will branch when nessessary. The trades will go as
follows:

• The Buyer formulates a predicate to check that data corresponds its description OR uses
universal truth as predicate.

• The Buyer requests the data from the Seller.

• The Seller notifies the Buyer of the data price (500 tokens).

• The Buyer creates a Robot using the scheme above with 500 tokens and the predicate.

• The Seller accepts the trade and sends start-trade() to the Robot along with 20 tokens
Fee.

1. Seller sends badly sized data or the Merkle root of the encrypted data does not match:

– The size or the Merkle root of the transferred data is invalid.
– The trade is stalled until time is out.
– On timeout the trade is reverted and money is returned to Buyer.

2. Seller tries to send garbage or one of blocks decrypts to garbage:

– Buyer finds that at least one block is invalid in either form.
– She invokes reject(sk, block, encrypted-proof) to start arbitration.
– Robot checks that block falsifies proofs and that Buyer was right.
– Robot returns all remaining funds to Buyer.

3. Buyer tries to blame Seller with valid data:

– Buyer selects the block to call “invalid”.
– Then she invokes reject(unencrypted-block, proof) to start arbitration.
– Robot performs check-block-and-proof(block, proof) and finds that Buyer

was not right.
– Then it sends all 520 tokens to Seller.

4. Buyer receives the data and the key, but remains silent:

– If the timeout has expired, 520 tokens are sent to Seller.

18


	Introduction
	Architecture overview
	Implementation choices
	Anonymity and certification
	Activity Type Graph
	Search queries
	Private chain
	Public chain
	Fair CV
	Data Disclosure

	Future work
	Conclusion
	Appendix
	Notations
	Partially centralized educators
	Smart-contract implementation
	Accounts
	Scripting
	NIFs
	Transaction
	Implementation of the data disclosure protocol using Robot account
	Example



